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Surface relaxation in crystals with spatial dispersion 

P Zielinski 
Institute of Nuclear Physics, ul. Radzikowskiego 152,31-342 Krakbw, Poland 

Received 30 November 1988, in final form 23 May 1989 

Abstract. Static response functions are derived for crystals with surfaces in a harmonic model 
showing spatial dispersion. The relaxed structure is then described by analytical formulae in 
crystals in which local stresses arise due to the presence of surfaces and in materials subject 
to macroscopic uniaxial stress with the axis either perpendicular or parallel to the surfaces. 
Pretransitional appearance of the new phase and the creation of antiphase domain walls in 
the crystals with surfaces are shown to be a consequence of thermal variation of effective 
force constants when the materials approach their structural phase transitions. 

1. Introduction 

The presence of surfaces engenders structural distortions extended to a larger or 
narrower subsurface zone of the crystal. Such a surface relaxation has been observed by 
low-energy electron diffraction (LEED) and x-ray diffraction under grazing angles in 
metals (Jona and Marcus 1988), semiconductors (Grey et a1 1988) and other materials 
with both unreconstructed and reconstructed surfaces (Fu eta1 1985). A deep and strong 
relaxation of the internal strain near the (001) surface of Ge  and Si crystals under a 
uniaxial stress applied in the (1 10) direction has been reported by Cousins et a1 (1987). 

All these phenomena reflect the reaction of the materials, which, being inhomo- 
geneous due to the existence of their surfaces, are subject to either a local surface stress 
or to a homogeneous stress applied in the experiment. The surface stress comes from 
the inter-atomic forces, which are all balanced in the bulk but would remain non- 
compensated if the surface were created by just terminating the bulk structure at a given 
crystallographic plane. Existing models (Marcus et a1 1988) show that the surface stress 
is spatially limited to several atomic layers under the surface. 

The asymptotic behaviour of the strain far from the stress localised at the surface has 
been described recently by Allan and Lannoo (1988) in a model showing a spatial 
dispersion. In the present paper the static reaction of crystalline solids to any one- 
dimensional distribution of applied stress is obtained exactly with the use of the response 
function technique proposed by Zielinski (1988) and based on the surface-interface 
response theory developed by Dobrzynski (1986). Since the relaxation phenomena are 
expected to be particularly pronounced near displacive phase transitions, the parameters 
of the present model are chosen to illustrate the thermal evolution of the structure while 
a structural instability is being approached. This seems important because the surface 
effects of phase transitions are already being investigated (for reviews see Ipatova and 
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Kitaev 1985, Ernst et a1 1987) and will certainly attract increasing interest in view of 
recent progress in experimental techniques. 

General features of the static response functions, or Green functions, appropriate 
to the model are outlined in 9 2 for materials displaying a non-local relation between 
stress and strain. The latter property, called spatial dispersion, is introduced here by 
phenomenological harmonic interactions of a sufficiently long, although finite, spatial 
range. The surface-interface response theory (Dobrzynski 1986) is then used to obtain 
the analytical expression for the static response function in crystals with surfaces. As a 
simple example of an application of the theory a perpendicular relaxation in a slab with 
two surfaces is studied in 0 3. It is shown that a deviation of surface force constants from 
their values peculiar to the bulk is able to produce a surface phase transition in which 
the arrangement of subsurface atomic layersundergoes a modification. In 9 4 the reaction 
of the same slab to a homogeneous strain is shown to be inhomogeneous in a certain 
region under the surfaces, a phenomenon which seems essential in the experiment of 
Cousins et aZ(1987). The corresponding local structure bears features of the soft mode 
when a structural instability is being approached. 

2. Static response functions in crystals with surfaces 

Knowing the crystallographic direction of the normal to the surface of interest, we shall 
treat the bulk crystal as an infinite succession of lattice planes perpendicular to this 
direction. Distortions that might occur within such planes will be, for the moment, 
neglected. Assuming that all the planes are identical and separated by a spacing a we 
shall denote by U(/) the displacement vector of the ith plane and introduce new variables 
x(1) = U(/ + 1) - U(/) proportional to the local I-dependent strain. In this notation the 
potential energy per unit area of the plane reads 

E = 1 
= M  

2 [ u ( I +  n )  - ~ ( l ) ] ' / . ? , [ ~ ( l +  n)  - U ( / ) ]  
/ =  - = n = l  

= / + M - 1  c x'(l)H(I, l ' ) x ( I r )  
/ =  - z.2 / ' = /  

where the coefficients H ( I ,  1 ' )  are 3 X 3 matrices related to the force constant matrices 
/.?, through linear combinations: 

n = l  

The number M indicates the maximum range of the harmonic interactions. 
= 1 , 2 , 3 ,  of the response function for the infinite crystal 

form, by definition, an infinite matrix inverse to the matrix of energy consisting of the 
elements HwD(I,  1 ' )  so that 

The elements GaD(I, I' ), CY, 

x 3  

where a,,, is the Kronecker delta symbol. 
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To derive the explicit expression for the response function GaD(l, I ! ) ,  it is convenient 
first to pass to reciprocal space in which the infinite matrix HaP(l,  1 ' )  becomes block- 
diagonal, every 3 x 3 block D(k) being defined as 

M- I 

D(k) = H(0, I' - I )  exp[ika(l' - 1)J 
/ ' - i = - M + I  

(4) 

for the wavevectors kfrom the first Brillouin zone: - n / a  < k s n / a .  Use has been made 
here of the translational periodicity of the matrix H(1 , I ' )  = H(0, I' - I ) .  

Evaluating the matrices G ( k )  = D-'(k) inverse to these 3 x 3 blocks one obtains the 
response function GWp(k) ,  m, 0 = 1 ,2 ,3 ,  of the system in the wavevector representation. 
In view, however, of further applications of the theory to systems that are not perfectly 
periodic in space, it is more useful to have the response function GmD(l, 1') in its original 
representation of positions I ,  I f ,  as defined in equation (3). The explicit form of this 
response function can be obtained by taking the Fourier transform of G ( k )  in the way 
described in detail by Zielinski (1988) (see also Mazur and Maradudin 1981). The 
resulting elements GOO(l, 1 ' )  read 

"4 

where z,, j ,=  1 , .  . . , 3 ( M  - l),  are roots of the equation det(D(2)) = 0 in which the 
3 x 3 matrix D(z) has been obtained from the matrix D(k) (equation (4)) by the sub- 
stitution z = elka. All the roots involved in equation (5) have their moduli less than unity: 
/z,l < 1 (see the discussion below). The quantities AWD(z,) of equation ( 5 )  are the 
algebraic complements of the corresponding elements Dag(z,)  of the matrices D(z,). In 
other words, AWp(z,)  is obtained by multiplying by (- l ) " + P  the determinant of the 2 X 2 
matrix obtained by striking out the a th  row and the /3th column of the matrix D(z,). 

The form of the Hermitian matrix D(k) (equation (4)) shows that the expression for 
det(D(z))issymmetricalin thevariable2,i.e. thepowersz'andz-',j = 1, . . . , 3 (M - l), 
enter here with identical real coefficients. As a consequence, all the 2 X 3(M - 1) roots 
of the equation det(D(z)) = 0 can be grouped into pairs 2, and z;' since whenever a z, 
satisfies the equation the corresponding zY1 fulfils it too. On the other hand, whenever 

= 1, or equivalently, z = elku with a real wavevector k ,  the quantity det(D(z)) is 
numerically equal to the product of the three eigenvalues of the corresponding matrix 
D(k). These are, at the same time, the eigenvalues of the infinite energy matrix of the 
elements Hep( l ,  1 ' )  (equation (2)). In a stable crystal all these eigenvalues for all the 
wavevectors must necessarily be positive and, consequently, their products must also 
be positive: det(D(z)) > 0 if Iz 1 = 1. Thus, the moduli of all the roots z, and z;' of the 
equation det(D(z)) = 0 must be different from unity if the crystal is stable; otherwise at 
least one of the eigenvalues would vanish. It is now clear that out of each pair of the 
roots 2, and 2;' exactly one root has its modulus less than unity. Only for the sake of 
convenience have the roots of moduli less than one been denoted by z, and not by 2;'. 

It is just these 3(M - 1) roots z,, /z,1 < 1, of the equation det(D(z)) = 0 that must be 
used to evaluate the response function GWp(l, 1 ' )  in equation ( 5 ) .  It should be added here 
that the condition I Z , ~  < 1, j = 1, . . . , 3(M - l),  is only a necessary condition for the 
crystal to be stable. It only ensures that the eigenvalues of the energy matrix Hwp(l ,  If) 
are different from zero, whereas stability requires that all the eigenvalues be positive. 



860 P Zielinski 

From a physical point of view the static response function Gwp(l, 1') describes the 
distribution of the local strainx(1) in the infinite crystal subject to a given distribution of 
the local stress s(1). A local stress s(1) appears when two opposite forces are applied to 
neighbouring planes. Within the simplifications made, the forces are assumed to be 
homogeneously distributed in the direction parallel to the planes. The distribution of 
the local strain x(1) in the crystal subject to a stress s(1) is then 

x ( l )  = G(1, l ' ) s (1 ' ) .  (6) 
I' 

It is instructive to consider the distribution of the strain x(1) under a stress s(I) localised, 
let us say, at 1 = 0, i.e. s(0) = s and s(1) = 0 if 1 # 0. The resulting deformation x ( l )  = 
G(1, 0)s is then determined by a series of exponential functions zJ'1 decreasing with 
distance 11) from the applied stress. The decrease is monotonic if the corresponding 2, is 
real positive and damped-oscillatory if z, is complex or real negative. Equivalently, this 
can be expressed by saying that such a distortion is described by some wavefunctions 
z, = where the wavevectors k, are generally complex, k, = k,' + ik;', the real part 
k, being responsible for the modulation and the imaginary part k;' for the spatial damping. 
This statement generalises the asymptotic formula obtained by Allan and Lannoo (1988) 
to all conceivable combinations of damped-oscillatory functions. 

When the effective force constants Pn change, for instance with temperature, the 
quantities z, also change and one of them zJ may eventually acquire the modulus 1 zJI = 
1. This corresponds to an instability of the crystal. The response function (equation ( 5 ) )  
then becomes divergent because either 2: = 1 or there exists a root z,complex conjugate 
to z,, z I  = z j  = so that z J  = z ; ' ,  a property which is a consequence of the fact 
that the coefficients of the equation det(D(z)) = 0 are real. The relative wavevector kj 
becomes real and is the wavevector of the soft mode driving the phase transition (see 
Zielinski 1988). 

In the presence of surfaces the response function has to be modified. For this purpose 
we define the potential energy of the semi-infinite series of planes labelled by I = 
1 , 2 , 3 , .  . . 

z 

E = 4 2 x ' ( / ) h ( l ,  l ' ) x ( l ' )  
1.1' = I 

(7) 

where 

(8) h(1, f') = H(1, 1 ' )  + Vo(1, 1 ' )  1, I' 2 1. 

The cleavage operator Vo(l ,  1') is defined to eliminate from the energy matrix H(I, 1 ' )  all 
the interactions of the lattice planes contained inthe crystal (i.e. for I 2  1) with the non- 
existent planes labelled by 1 s 0. The explicit cleavage operator in the present model is 

M -  1 

Vo(L 1 ' )  = - E nP/+n f o r l s l ' s 1 < M -  1 (9a) 
n= 1 

and 
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To make use of the surface response theory (Dobrzynski 1986) it is convenient to define 
formally 

Vo(l, 1 ' )  = -H(l, 1 ' )  for1 2 1 andl '  d 0 (9c) 

and 

M -  I 

A,,(/, 1 ' )  = Vo(I ,  l")G(l" ,  1 ' )  for 1, I '  2 1. (10) 
I " = - , M + 2  

Thus, taking into account the indices 1, 1' = 1, . . . , M - 1 and the matrix indices (Y, /? = 
1 ,2 ,3 ,  the dimension of the non-zero block of the cleavage operator is 
3(M - 1) x 6 ( M  - 1) and the dimension of the non-zero part of the operator Au(l, 1' ) is 
3(M - 1) x =. Then the response function g(1 , l ' )  defined so as to fulfil the relation 

x 

2 h(1, l " ) g ( l " ,  1 ' )  = B N r I  
/ "= 1 

reads (Dobrzynski 1986, Zielinski 1988) 
M -  I 

g(1, 1 ' )  = G(l ,  1 ' )  - G(1, ~)4-'(m, ")Ao(", 1 ' )  (11) 
ni.ni '= I 

where the sign 'inverse' refers to the 3 ( M  - 1) X 3(M - 1) matrix 4 of the elements 

Amp("') = 4?"&3 +Ao,ap(m,") (12) 

In fact, the surface described by the expression (11) is ideal in the sense that the cleavage 
operator (equations (9a) and (9b)) only eliminates some force constants whereas in the 
real material account should be taken of a possible difference between the remaining 
force constants near to the surface and the corresponding force constants in the bulk. 
Such a variation of the force constants only requires a modification of the cleavage 
operator (see Zielinski 1988) in the derivation of formula (11). 

In a way completely analogous to that in which expression (11) has been derived one 
can obtain the response function for systems with several surfaces and/or interfaces 
(Dobrzynski 1986). As an example a model crystal with two parallel surfaces (a slab) 
will be treated in the next section. 

m,m'= 1 , .  . . , M  - l ; a , /?=  1,2,3. 

3. Perpendicular relaxation in a crystal with two surfaces 

The general formulae presented in the previous section become markedly simpler on 
the assumption that the displacements perpendicular to the surface are independent of 
parallel translations of the lattice planes. We shall adopt such an assumption and consider 
only perpendicular displacements in order to study the main features of the theory on a 
simple example. The resulting expressions are readily applicable to materials in which 
only a perpendicular relaxation occurs (Jona and Marcus 1988). Now the vector and 
matrix notation of u( l ) ,  x ( l ) ,  H(1, l ' ) ,  G(I ,  1 ' )  and g ( l ,  1 ' )  can be dropped. 
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Putting M = 2, which is the simplest case exhibiting a spatial dispersion, one obtains 
the corresponding bulk response function 

2y-ri+i 

(13) G(1, 1') = -- 
/32 2: - 1 

where 

- r  + ( r2  - 1)lI2 

--y - ( r 2  - 1)1/2 

if r > 1(p2 > 0) 

i f r < - 1 ( / 3 , < 0 )  

while 

In the interval - 1 S r S 1 the crystal is unstable. 
Admitting that the longitudinal force constants p1 and p2 depend on temperature, 

as is usually assumed in soft-mode theories of phase transitions (Cowley 1980), one finds 
that the limit r -+ - 1- corresponds to an elastic phase transition whereas the limit r + 1, 
corresponds to an instability with the soft mode of wavevector k = n/a from the Brillouin 
zone boundary. 

The expression for the response function in the crystal consisting of L + 1 lattice 
planes and thus possessing two parallel surfaces is 

2 / + / '  
g(1, 1 ' )  = -~ 

p2 2:  - 1 1 + (1 - E)21 /32(2? - 1) 
1 i 1 Z:-"if1 ( 21 + 1 - E 

(21 + 1 - ,,2:,+1 

p*(z: - 1){[1 + (1 - & ) 2 1 ] 2  - 2:L(zl + 1 - E)2} 
X 

[( 2 1  + - * 2 1 + / ' - 1  + p ]  i 1  x [l + (1 - E)ZI] 1 + (1 - &)21 { 
- (21 + 1 - E)(Zf[' + 2 ; - / ) }  (15) 

where the quantity E defines the deviation of the surface force constant from the 
corresponding bulk force constant: E = (p f  - p1 )//3?. Formula (15) allows for the 
determination of the relaxed structure under any distribution of applied stress. Putting 
a stress s( 1) between two first planes I = 1 and I = 2 only and passing to the limit L -+ x 

one recovers the asymptotic expression obtained by Allan and Lannoo (1988) for a semi- 
infinite sample with a stress localised on the surface. When 0 < z1 < 1, i.e. p2 < 0, 
the local strain x(1) = g(1, l)s(l) decays exponentially with distance from the surface, 
whereas for -1 < z 1  < 0, i.e. /3, > 0, the relaxation has an alternating character most 
frequently observed in real materials. Different spatial modulations would appear for 
the range of interactions M larger than 2 (Zielinski 1988). 

A thermal variation of the force constants towards the limits of stability. i.e. when 
z1+ 1 or z I  -+ - 1 (see equation (14)), results in an increase in the amplitude and the 
spatial extent of the structural distortion. In crystals undergoing the corresponding bulk 
phase transitions, such behaviour manifests itself by the pretransitional appearance of 
the structure peculiar to the new phase. 

An interesting property of a crystal with surfaces is that under some conditions an 
instability of the structure may occur even in the region of and p2 where the bulk 



Surface relaxation in crystals with spatial dispersion 863 

-1.0 -0.5 0 0.5 1.0 
z 

Figure 1 .  Right-hand side of equation (16) versus z for some values of E (indicated above the 
curves). Solutions of equation (16) correspond to the intersection of these curves with the 
z’L curve. 

structure is stable. Such an instability should be understood as a phase transition localised 
at the surface. Here the transition will consist of the loss of the equidistant structure by 
the system of identical lattice planes. The critical value z1 = 2, corresponding to such an 
instability is defined by the divergence of the response function (15) and can be obtained 
from the equation 

The plot of the right-hand side of equation (16) in figure 1 helps one to realise that the 
condition (16) can be fulfilled in the region of stability of the bulk, i.e. for IzcI < 1, only 
when either E < 0 and - 1 < z ,  < 0 or  E > 2 and 0 < z ,  < 1. Indeed, the crystal is always 
stable for zI = 0; then the closest to z I  = 0 point of intersection of the function ziL with 
the corresponding line from figure 1 marks the instability. In any case the surface phase 
transition occursat /3! < P I .  It seems likely that such a surface relaxation phase transition 
is able to provoke a related surface reconstruction phase transition. The latter can also 
be described within the same kind of theory taking into account possible structural 
distortions within the planes (Wang et a1 1988). 

4. Surface effects of homogeneous stress 

The application of a macroscopic stress to a perfect infinite crystal always results in a 
homogeneous deformation of the material whose reaction to the stress is defined by 
macroscopic and inner elastic constants (Cousins 1978). However, in reality any stress 
can only be transmitted to the material through the boundaries of the sample. Some 
inhomogeneity of the deformation should, therefore, be expected near to the loaded 
surfaces and even in a neighbourhood of the surfaces free of stress in the case when the 
stress is uniaxial. Knowledge of the static response functions allows for the quantitative 
description of the structure in finite stressed crystals within the limits of elasticity. 

As the simplest example we shall consider the effect of a uniaxial stress imposed 
perpendicular on the surface of the slab treated in the previous section. The distribution 
of the local s t ress( / )  produced by opposite external forces applied to the limiting planes 
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0 

-0.1 .-.. .-. - 
k 

-0.2 1 I 

I I I , 
1 10 20 30 40 50 

I 
Figure 2. Deformation x ( l )  = u( l  + 1) - U([) of slab containing 5 2  atomic layers under 
homogeneous compressive stress in case p1 < 0. Influence of the surface force constant is 
visible. Arrow indicates homogeneous deformation of infinite crystal. 

of the slab 1 = 1 and 1 = L + 1 respectively is homogeneous: s(1) = s. Consequently, in 
the absence of other stresses, the deformation x(1) is 

L 

x(1) = s c g(1, 1 ' ) .  
i' = 1 

(One should notice that the number of local strain variables x(1) = u(l + 1) - u(1) is L 
in the slab of L + 1 planes.) 

In view of the analytical form of the response function (equation (15)) the summation 
in equation (17) reduces to some geometrical series and can be done explicitly: 

SZ1 x ( l )  = 
M Z :  - l ) ( Z l  - 1) 

i z{  + Z f + l - i  - ( zy  + z ; - / ) y - l  

zf y - 2 ; L y - 1  
x (- (zl + 1) + (1 + y )  

where y = (zI + 1 - ~ ) / [ 1  + (1 - E ) z ~ ] .  The first term in the large parentheses of 
equation (18) describes the homogeneous response of the infinite material to the applied 
stress. The response of the crystal with surfaces can also be homogeneous provided that 
E = 2 ( y  = - 1). This is, however, only a special case. Normally, a finite crystal subject 
to a homogeneous stress shows a deformation that depends on the distance from the 
surface and only at a certain depth acquires the form peculiar to the bulk material. An 
example of such behaviour is depicted in figure 2 for z1 > 0, i.e. b2 < 0. The value E = 
2.25 is chosen rather close to the critical value E, = 2.284 corresponding to the surface 
instability (see the previous section). This explains the strong compression in the vicinity 
of the surfaces. 

The influence of the surface force constant 0; in the case z1 < 0, i.e. pz > 0, is shown 
in figure 3. Here the uniaxial stress locally produces an alternating structure compatible 
with the mode of the wavevector k = n / a .  If the surface force constant is sufficiently 
hard, E > 2, the first inter-layer distance is shorter than the second one, etc. For E < 2 
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Figure 3. Alternating deformation of the slab under homogeneous compressive stress for 
/3? > 0. 
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Figure 4. Slab of even number of layers under uniaxial compressive stress; E = 0. 

the sequence is the reverse. This exemplifies the role of the surfaces in creating one of 
the two possible antiphase domains in the phase transition driven by the soft mode with 
k = n / a .  

When the bulk instability is approached, i.e. zl+ -1, the deformation cor- 
responding to the soft mode becomes stronger and more extended in space, as is shown 
in figures 4 and 5 .  The comparison of both figures reveals the dependence of the distorted 
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T 

1 ‘ ‘  

10 20 30 40 c 
I , ,  

Figure 5 .  Slab of odd number of layers under uniaxial compressive stress; E = 0.  Nucleus of 
antiphase domain wall is visible in the middle. 

structure on the number of layers in the slab. Since both the slab itself and the stress 
have reflection symmetry with respect to the middle plane of the slab, the deformation 
of both surfaces is completely symmetrical. In the case of an odd number of layers this 
symmetry can only be achieved by creating a defect (antiphase domain wall) shown in 
figure 5 .  

Formula (18) applies to a compressive (s < 0) as well as to an elongating (s > 0) 
stress. However, the latter is much more difficult to obtain experimentally. 

From the experimental point of view free surfaces of uniaxially stressed crystals are 
more interesting as they are easily accessible for structural studies. The behaviour of 
such surfaces can also be analysed with the use of the derived response functions. 
Denoting by x the direction normal to the slab and by y the direction of the axis of the 
stress s22  parallel to the slab, one can write the following equations of equilibrium: 

where h(1, l ‘ ) ,  1, I‘ = 1, , . , , L ,  is the matrix of potential energy analogous to equation 
(8) and c22 is the longitudinal elastic constant in the y direction. Far enough from the 
loaded surfaces the compressive strain in the material is sufficiently homogeneous and 
is denoted here by e22.  The coefficient q(1) is related to the force constants of the pairs 
of atoms linked by contacts oblique with respect to the x and y directions. In the bulk 
material the quantity q(I)  becomes independent of 1 and amounts to the elastic constant 



Surface relaxation in crystals with spatial dispersion 867 

c 1 2 .  Remembering that Ck=lh(l ,  I”)g( /” ,  1‘) = 6/,,, one finds the deformation x(1) from 
equations (19) and (20): 

In the special case, where only interactions between the atoms of different y coordinates 
exist for nearest-neighbour planes, the quantity ~ ( 1 )  becomes /-independent and the 
deformation of the crystal is just proportional to that given by equation (18). 

5. Discussion 

The analytical results obtained in § §  3 and 4 are directly applicable to centrosymmetric 
crystals with surfaces oriented so that the perpendicular motions of the lattice planes 
can be decoupled from their parallel displacements. Additionally, the site symmetry of 
all the atoms has to include inversion. Otherwise degrees of freedom should be taken 
into account corresponding to internal strains (Cousins 1978). This will increase the 
dimension of the generalised force constant matrices in equation (l), but the main 
scheme of the theory will remain the same. It seems that the surface effect in Ge  and Si 
stressed crystals (Cousins et a1 1987) mainly comes from the spatial dispersion of the 
materials and can be described with the use of this kind of theory. 

The most interesting phenomena predicted by the present model seem to occur in 
free and stressed crystals undergoing structural phase transitions. Thanks to the spatial 
dispersion, the surfaces of such materials play the role of nuclei of the new phase within 
the matrix of the initial phase. In perfectly prepared thin layers of such crystals the 
surfaces can even control the appearance of domains and domain boundaries (see figures 
4 and 5). For the moment experimental studies are limited to the role of surfaces in lock- 
in phase transitions of incommensurate modulated crystals (Garel and Moudden 1987) 
but further investigations in this direction are imminent in the near future. 

A limitation of the present model comes from the harmonic approximation, which 
may well be insufficient if the deformation becomes too strong. It means that, very close 
to continuous phase transitions and under very high stress, anharmonic terms should be 
added to the expression (1). In such a case perturbation theory has to be used to obtain 
a realistic response function of the system. 
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